520 research outputs found

    "Too many systems, too little time": integrating an eprint repository into a University publications system

    Get PDF
    This paper discusses the analysis, design and implementation of an integrator system to share data between an institutional eprint repository (IR) and a University publications management system. The process of building IR functionality into the University system is described in the context of user demands to reduce data input to multiple systems, and the Library's desire to increase the uptake and usability of its own eprint system

    Gene Therapy for Dopamine Dyshomeostasis: From Parkinson's to Primary Neurotransmitter Diseases

    Get PDF
    Neurological disorders encompass a broad range of neurodegenerative and neurodevelopmental diseases that are complex and almost universally without disease modifying treatments. There is, therefore, significant unmet clinical need to develop novel therapeutic strategies for these patients. Viral gene therapies are a promising approach, where gene delivery is achieved through viral vectors such as adeno-associated virus and lentivirus. The clinical efficacy of such gene therapies has already been observed in two neurological disorders of pediatric onset; for spinal muscular atrophy and aromatic L-amino acid decarboxylase (AADC) deficiency, gene therapy has significantly modified the natural history of disease in these life-limiting neurological disorders. Here, we review recent advances in gene therapy, focused on the targeted delivery of dopaminergic genes for Parkinson's disease and the primary neurotransmitter disorders, AADC deficiency and dopamine transporter deficiency syndrome (DTDS). Although recent European Medicines Agency and Medicines and Healthcare products Regulatory Agency approval of Upstaza (eladocagene exuparvovec) signifies an important landmark, numerous challenges remain. Future research will need to focus on defining the optimal therapeutic window for clinical intervention, better understanding of the duration of therapeutic efficacy, and improved brain targeting. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Dopamine Transporter Deficiency Syndrome (DTDS): Expanding the Clinical Phenotype and Precision Medicine Approaches

    Get PDF
    Infantile parkinsonism-dystonia due to dopamine transporter deficiency syndrome (DTDS) is an ultrarare childhood movement disorder caused by biallelic loss-of-function mutations in the SLC6A3 gene. Advances in genomic analysis have revealed an evolving spectrum of SLC6A3-related neurological and neuropsychiatric disorders. Since the initial clinical and genetic characterisation of DTDS in 2009, there have been thirty-one published cases with a variety of protein-truncating variants (nonsense variants, splice-site changes, and deletions) and missense changes. Amino acid substitutions result in mutant proteins with impaired dopamine transporter function due to reduced transporter activity, impaired dopamine binding, reduced cell-surface expression, and aberrant posttranslational protein modification with impaired glycosylation. In this review, we provide an overview of the expanding clinical phenotype of DTDS and the precision therapies in development, including pharmacochaperones and gene therapy

    Reconstituted high-density lipoproteins promote wound repair and blood flow recovery in response to ischemia in aged mice

    Get PDF
    Background: The average population age is increasing and the incidence of age-related vascular complications is rising in parallel. Impaired wound healing and disordered ischemia-mediated angiogenesis are key contributors to age-impaired vascular complications that can lead to amputation. High-density lipoproteins (HDL) have vasculo-protective properties and augment ischemia-driven angiogenesis in young animals. We aimed to determine the effect of reconstituted HDL (rHDL) on aged mice in a murine wound healing model and the hindlimb ischemia (HLI) model. Methods: Murine wound healing model—24-month-old aged mice received topical application of rHDL (50 μg/wound/ day) or PBS (vehicle control) for 10 days following wounding. Murine HLI model—Femoral artery ligation was performed on 24-month-old mice. Mice received rHDL (40 mg/kg) or PBS, intravenously, on alternate days, 1 week pre-surgery and up to 21 days post ligation. For both models, blood flow perfusion was determined using laser Doppler perfusion imaging. Mice were sacrificed at 10 (wound healing) or 21 (HLI) days post-surgery and tissues were collected for histological and gene analyses. Results: Daily topical application of rHDL increased the rate of wound closure by Day 7 post-wounding (25 %, p < 0.05). Wound blood perfusion, a marker of angiogenesis, was elevated in rHDL treated wounds (Days 4–10 by 22–25 %, p < 0. 05). In addition, rHDL increased wound capillary density by 52.6 %. In the HLI model, rHDL infusions augmented blood flow recovery in ischemic limbs (Day 18 by 50 % and Day 21 by 88 %, p < 0.05) and prevented tissue necrosis and toe loss. Assessment of capillary density in ischemic hindlimb sections found a 90 % increase in rHDL infused animals. In vitro studies in fibroblasts isolated from aged mice found that incubation with rHDL was able to significantly increase the key pro-angiogenic mediator vascular endothelial growth factor (VEGF) protein (25 %, p < 0.05). Conclusion: rHDL can promote wound healing and wound angiogenesis, and blood flow recovery in response to ischemia in aged mice. Mechanistically, this is likely to be via an increase in VEGF. This highlights a potential role for HDL in the therapeutic modulation of age-impaired vascular complications

    Urinary Biomarkers: Mitigating Diagnostic Delays of Bladder Cancer in the COVID-19 era

    Get PDF
    © 2020, Springer Nature Limited. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1038/s41585-020-00419-zThe COVID-19 pandemic has resulted in a substantial increase in waiting times for cystoscopies, prompting concerns of delayed diagnoses and substandard surveillance of bladder cancer. Expanding the role of urinary biomarkers in diagnostic and surveillance pathways could be a strategy to address this problem, and several novel biomarkers have shown promise for this purpose.Peer reviewe

    Trajectories of quality of life, life satisfaction, and psychological adjustment after prostate cancer

    Get PDF
    Background: To describe trajectories of health-related quality of life (QoL), life satisfaction, and psychological adjustment for men with prostate cancer over the medium to long term and identify predictors of poorer outcomes using growth mixture models. Methods: One-thousand sixty-four (82.4% response) men diagnosed with prostate cancer were recruited close to diagnosis and assessed over a 72-month (6-year) period with self-report assessment of health-related QoL, life satisfaction, cancer-related distress, and prostate specific antigen anxiety. Urinary, bowel, and sexual function were also assessed using validated questionnaires. Results: Poorer physical QOL was predicted by older age, lower education, lower income, comorbidities, and receiving hormone therapy. Lower life satisfaction was related to younger age, lower income, not being partnered, and comorbidities. Poorer psychological trajectories were predicted by younger age, lower income, comorbidities, and receiving radical prostatectomy or brachytherapy. Better urinary, bowel, and sexual function were related to better global outcomes over time. Anxiety about prostate specific antigen testing was rare. Conclusions: Distinct trajectories exist for medium- to long-term QoL, life satisfaction, and psychological adjustment after prostate cancer; with age and socioeconomic deprivation playing a differential role in men\u27s survivorship profile and the impact of functional status on outcomes increasing over time. These results reinforce the need for an appraisal of men\u27s life course in addition to treatment side effects when planning survivorship care after cancer

    The effect of support surface and footwear condition on postural sway and lower limb muscle action of the older women

    Get PDF
    Background: Diminished somatosensory function is a critical age-related change which is related to postural instability in the older population. Footwear is a cost-effective way to modulate the postural stability by altering sensorimotor inputs via mechanoreceptors on the plantar surface of the feet. Compared to insoles with indentions in the entire surface, we innovatively developed a textured insole with site-specific nodulous protrudous. This study thus aimed to investigate the immediate effect of the nodulous insole and supporting surface condition on static postural stability and lower limb muscle activation for healthy older women. Methods: This is a single-session study with repeated measurements. Twenty-three healthy older women stood on the firm (i.e., concrete floor) and foam surfaces with their eyes open in the three footwear conditions, namely barefoot, plain shoes and shoes with an innovative textured insole, for 30 seconds. Static postural sway and muscle activation of biceps femoris (BF), vastus lateralis (VL), tibialis anterior (TA), and lateral gastrocnemius (LG) of the dominant leg were measured during each testing condition. Results: Compared to a firm surface, standing on the foam could significantly increase the body sway and lower limb muscle activation (p<0.05). When standing on the foam, compared to barefoot, wearing footwear significantly decreased the VL and TA muscle activation and minimize the postural sway in medial-lateral and anterior-posterior direction, while the influence is larger for the shoes with nodulous insloe compared to the plain shoes. No significant differences between the footwear conditions for static stability and muscle activation were observed on firm surface condition. Conclusions:For older women, footwear could improve the postural stability in the unstable surface, particularly the footwear with nodulous insole, with the underlying mechanism as enhancing the mechanoreceptors on the plantar surface of the feet

    Navigator channel adaptation to reconstruct three dimensional heart volumes from two dimensional radiotherapy planning data

    Get PDF
    BACKGROUND: Biologically-based models that utilize 3D radiation dosimetry data to estimate the risk of late cardiac effects could have significant utility for planning radiotherapy in young patients. A major challenge arises from having only 2D treatment planning data for patients with long-term follow-up. In this study, we evaluate the accuracy of an advanced deformable image registration (DIR) and navigator channels (NC) adaptation technique to reconstruct 3D heart volumes from 2D radiotherapy planning images for Hodgkin's Lymphoma (HL) patients. METHODS: Planning CT images were obtained for 50 HL patients who underwent mediastinal radiotherapy. Twelve image sets (6 male, 6 female) were used to construct a male and a female population heart model, which was registered to 23 HL "Reference" patients' CT images using a DIR algorithm, MORFEUS. This generated a series of population-to-Reference patient specific 3D deformation maps. The technique was independently tested on 15 additional "Test" patients by reconstructing their 3D heart volumes using 2D digitally reconstructed radiographs (DRR). The technique involved: 1) identifying a matching Reference patient for each Test patient using thorax measurements, 2) placement of six NCs on matching Reference and Test patients' DRRs to capture differences in significant heart curvatures, 3) adapting the population-to-Reference patient-specific deformation maps to generate population-to-Test patient-specific deformation maps using linear and bilinear interpolation methods, 4) applying population-to-Test patient specific deformation to the population model to reconstruct Test-patient specific 3D heart models. The percentage volume overlap between the NC-adapted reconstruction and actual Test patient's true heart volume was calculated using the Dice coefficient. RESULTS: The average Dice coefficient expressed as a percentage between the NC-adapted and actual Test model was 89.4 ± 2.8%. The modified NC adaptation technique made significant improvements to the population deformation heart models (p = 0.01). As standard evaluation, the residual Dice error after adaptation was comparable to the volumetric differences observed in free-breathing heart volumes (p = 0.62). CONCLUSIONS: The reconstruction technique described generates accurate 3D heart models from limited 2D planning data. This development could potentially be used to retrospectively calculate delivered dose to the heart for historically treated patients and thereby provide a better understanding of late radiation-related cardiac effects
    corecore